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Abstract The interactions between room temperature ionic
liquids (RTILs) and weak fluorescent chemicals still remain
unclear, which hinders the complete and efficient utilization of
these “green” solvents in fluorescent analyses of organic
chemicals. Herein, we reported the effects of four RTILs,
[C8MIM]BF4, [C14MIM]BF4, [C8MIM]PF6 and [C14MIM]
PF6, on fluorescence behavior of 4-tert-octylphenol (4-t-OP).
In the fortified concentration range of 0.2–1.0 mM, the
quenching effects were increased with increasing concentra-
tions of RTILs. However, no obvious variation of peak shape
of 4-t-OP was observed in the quenching process, suggesting
no formation of ground-state complex between fluorophores
in 4-t-OP and quencher (ionic liquids). As for anion effect, the
fluorescence quenching efficiency of 4-t-OP by BF4

- was
greater than PF6

-, but the carbon chain length on the imidazo-
lium ring had no significant relationship with fluorescence
intensity of 4-t-OP. Both Ksv values (>1.0×103L/mol.s) and

the different temperature effects demonstrated that the
quenching of 4-t-OP by four RTILs was the presence of
dynamic and static quenching mechanism. The FI of dansyl
chloride within [C8MIM]BF4 increased nearly 5-fold as com-
pared to the control, showing a sensitizing effect on the strong
fluorescent chemicals, while a quenching effect on 4-t-OP
belonging to weak fluorescent chemicals. The fluorescence-
enhanced amplitude of dansyl chloride in [C8MIM]PF6 was
greater than [C8MIM]BF4. The fluorescence quenching of 4-t-
OP by [C8MIM]PF6 did not belong to FRET phenomenon
because of no overlap of emission spectrum of 4-t-OP and
absorption spectrumof [C8MIM]PF6.When 0.6mM [C8MIM]
PF6 in acetonitrile was used as the solvent, the detection limit
of 4-t-OP was 3.7 μg/L, and the linearity range was
0.01–0.8 mg/L (R200.9990). In summary, these results
provide a theoretical foundation for the application of
RTILs in weak fluorescent chemicals.
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Introduction

Room temperature ionic liquids (RTILs) are organic salts
composed entirely of ions, and alternatives to the conventional
and environmentally detrimental volatile solvents. They pos-
sess several attractive advantages, such as negligible vapor
pressure, wide liquid range (from −90 °C to 400 °C), high
thermal stability, capacity for dissolvingmany chemicals, high
electrical conductivity, a wide electrochemical window, non-
flammable and recyclable nature [1, 2]. These properties make
RTILs wide applications as media of material synthesis [3],
electrochemical study [4], separation [5] and chemical reac-
tion [6]. In analytical fields, RTILs were used as stationary
phase in gas chromatography [7], and as mobile phase addi-
tives in capillary electrophoresis and fluorescence analysis [8,
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9]. Zou and coworkers found that part of RTILs can sensitize
fluorescence of norfloxacin significantly, which was used to
develop sensitive spectrometric method for determination of
norfloxacin at trace levels [10]. Novel ionic liquid
[C4MIM][BA] can significantly enhance the fluorescence of
Eu3+ and Tb3+ [11]. However, [C4MIM]PF6 can quench the
fluorescence of 17 β-estradiol, but enhance the fluorescent
sensitivity of its derivatives with dansyl chloride [12]. The
fluorescence quenching of polycyclic aromatic hydrocarbons by
nitromethane was less efficient in [C4MIM]PF6 than acetonitrile,
which resulted from different solvent viscosity [9]. However, the
mechanism on interaction between ionic liquids and fluorescent
substances still remain unclear, especially for the weak chem-
icals with the weak fluorophores. These problems hinder the
complete and efficient utilization of these “green” solvents in
fluorescent analysis of organic chemicals.

4-tert-Octylphenol (4-t-OP) is an endocrine disruptor
chemical and is widely used as an antioxidant in plastic and
rubber products. It is also an important degradation product of
alkyphenol ethoxylates, which are non-ionic surfactants with
emulsifying and dispersing actions in the industrial surfactant,
detergents, plasticizers and emulsifiers [13]. As a consequence
of its large use in our daily life, 4-t-OP is widely distributed in
the environment and presents a potential threat to aquatic life
and human health, such as affecting the body’s normal endo-
crine function, immune function, neurological toxicity, terato-
genicity and carcinogenicity [14, 15]. Therefore, it is necessary
to develop a quick, sensitive and reliable technique to determine
trace 4-t-OP residue in each kind of matrix. Fluorescence de-
termination is a direct, simple and quick method for 4-t-OP
analysis in environmental matrices [16, 17]. 4-t-OP is a rela-
tively weak fluorescence chemical with the detection limit of
0.04 mg/L by its ownmolecular fluorescence [18]. Therefore, it
is always derivatized by dansyl chloride to achieve a fluorescent
detection level of μg/L[12]. Because its residual level is often
detected to be at ng/L-μg/L level in environmental water sam-
ples [19, 20], the derivatization of 4-t-OP can not still satisfy the
requirement for sensitive fluorescence determination. There-
fore, it is urgent that the strongly fluorescent sensitizing reagent
or medium be developed. In recent years, our research aimed to
screen RTILs with characteristics of fluorescence-enhancing or
quenching, and further to apply them in trace residual analysis
of organic chemicals. The previous study demonstrated that
some RTILs have significantly fluorescence-quenching effects
on 4-t-OP. Fluorescence quenching is an important technique
used to obtain adequate information about structure and dynam-
ics of fluorescence molecules. It is a process, in which fluores-
cence intensity (FI) of the solute decreases by a variety of
molecular interactions such as excited state reactions, molecular
rearrangements, energy transfer, ground-state complex forma-
tion and collision-quenching [21–23]. So far, no data are avail-
able on the quenching mechanism between RTILs and 4-t-OP.
Therefore, the present study was aimed to evaluate the effects of

RTILs on fluorescent behavior of 4-t-OP, to analyze the quench-
ingmechanism between them, and to provide foundation for the
application of RTILs in weak fluorescent chemicals.

Experimental Section

Materials

4-Octylphenol (4-t-OP, purity 99.5 %) was purchased from
Sigma-Aldrich (St. Louis, MO, USA). Reference compounds
of RTILs, 1-octyl-3-methylimidazolium hexafluorophos-
phate, [C8MIM]PF6; 1-tetradecyl-3-methylimidazolium
hexafluorophosphate, [C14MIM]PF6; 1-octyl-3-methyl- imi-
dazolium tetrafluoroborate [C8MIM]BF4; 1-tetradecyl-3-
methyl-imidazolium tetrafluoroborate, [C14MIM]BF4 with
stated purities of 99.0%, were all purchased from Shanghai
Chengjie Co. Ltd. (Shanghai, China). The four RTILs were
used as received without further purification. Ultrapure water
used in the study was purified with a Millipore Mill-Q plus
system (Bedford, MA, USA). Acetonitrile was spectroscopic
grade and was used as received.

Sample Preparation and Analytical Methods

The stock solutions of 4-t-OP (100 mg/L) and ionic liquid
(0.5 mol/L) were prepared in acetonitrile and stored at −4 °C
before use. Working solutions were obtained by appropriate
dilution of the stock solution with acetonitrile. To investigate
the effects of RTILs, precalculated amount of RTILs was direct-
ly added to working solution of 4-t-OP, and the concentration of
4-t-OP in the mixture solution was set at 0.3 mg/L. The mixture
solution was then transferred into 1 cm2 quartz micro-cuvettes at
25, 35 and 45 °C for fluorescence analysis. Fluorescence spectra
were recorded using a model RF-5301PC spectrofluorometer
(Shimadzu Corporation, Kyoto, Japan) with a 75 W Xenon arc
lamp as the excitation source and single-gratingmonochromator
as wavelength selection device with a slit width of 5 nm. All
fluorescence spectra were corrected for the solvent blank.

Results and Discussion

Effects of Ionic Liquids on FIs of 4-t-OP

The fluorescence spectra of varying 4-t-OP concentrations
in acetonitrile were investigated. The excitation and emis-
sion maxima of 4-t-OP were set at 227.0 and 302.0 nm,
respectively. The FIs of 4-t-OP increased with increasing its
concentrations, i.e., when 4-t-OP concentrations ranged
from 0.1 to 0.5 mg/L, its FI increased from 179.319 to
750.596 (a.u.). However, with the further increasing con-
centrations (>0.5 mg/L), FI of 4-t-OP is out of the detectable
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range, and thus 0.3 mg/L was selected in the subsequent
experiment.

The different RTIL concentrations in solvents can lead to a
complex interplay due to the different physicochemical prop-
erties of solvents (e.g. viscosity, static dielectric constant, re-
fractive index, density, polarizability, etc.), which affects
steady-state emission behavior of the analytes. At ambient
temperatures, ionic liquids are much more viscous than organic
solvents, such as acetonitrile. For example, the viscosity of
acetonitrile is 0.37 mPas at 20 °C, while that of [C4MIM]PF6
and [C4MIM]BF4 is 430 mPas and 154 mPas, respectively, at
the same temperature. Also, the viscosity of ionic liquids,
belonging to the same type, was increased with increasing
substituent atoms on imidazolium ring [24]. Considering the
vast differences among the viscosity values of [CnMIM]PF6,
[CnMIM]BF4 and of the organic solvents. We diluted
[C8MIM]PF6, [C14MIM]PF6, [C8MIM]BF4 and [C14MIM]
BF4 to a series of concentrations (0.2, 0.4, 0.6, 0.8 and
1.0 mM) in acetonitrile. The fluorescence spectra of 4-t-OP
(0.3 mg/L) are shown in Fig. 1 in the presence of the four
RTILs (0–1.0 mM). Obviously, the FI of 4-t-OP was decreased
with increasing RTIL concentration, suggesting that RTILs
were a quencher in the process of steady-state fluorescence.
Also, the shape of fluorescence spectra remained unchanged,
and a significant hypsochromic or bathochromic shift of the
emission maxima were not observed in the quenching process.
[C8MIM]PF6, [C14MIM]PF6, [C8MIM]BF4 and [C14MIM]
BF4 all had a significant quenching effects on fluorescence of
4-t-OP. The quenching effects by ionic liquids can rule out
forming possibility of ground-state complex between the fluo-
rophores in 4-t-OP and the quencher (ionic liquids). In addition,
these results were in agreement with Fletcher’s observation that
the steady-state emission behavior of six polycyclic aromatic
hydrocarbons was quenched within [C4MIM]PF6 [9].

Effects of Different Anions of RTILs on FIs of 4-t-OP

The different cation or anion in RTILs can lead to its different
properties, e.g. viscosity, density, melting point and polarity,
which affects its fluorescence behavior. The effects of imida-
zolium ion liquids with BF4

- or PF6
- on fluorescence spectra of

4-t-OP are shown in Fig. 2. It was obvious that on addition of
[CnMIM]BF4, the FI of 4-t-OP was decreased more sharply
than that of [CnMIM]PF6. It was reported byWasserscheid and
cowokers that the different anion structures had great impact
on the viscosity of RTILs [25]. The higher the anion symmetry,
the larger corresponding ionic liquid viscosity was. Compared
with BF4

−, the negative charge of PF6
− anion, due to its

octahedral structure, can be well dispersed around the ions to
occur more actions in the solvent. In addition to the viscosity
differences, the N, F on the anion of ionic liquid can be
combined with H atom on cationic imidazolium ring to form
hydrogen bond. Because of the strong electrostatic attraction

between the anions and cations, the coulomb force of
[CnMIM]PF6 is stronger than that of [CnMIM]BF4, resulting
in the stronger viscosity of PF6

− ionic liquids [26]. The stron-
ger viscosity can inhibit diffusion of excited state and lead to
the reducing of collision probability of fluorophores in micro-
environment. Therefore, the FI of 4-t-OP was decreased more
weakly due to the greater viscosity of [CnMIM]PF6.

Effects of Different Cations of RTILs on FI of 4-t-OP

[CnMIM]PF6 with different carbon chain length (n04, 6, 8,
10, 12, 14) was used to analyze the effects of different
cations on the FI of 4-t-OP. As shown in Fig. 3a, no remark-
able distinction for the FI of 4-t-OP was observed in the
RTIL concentration range of 0.4–1.0 mM with different
carbon chain length. Figure 3b shows the fluorescence
emission spectra of 4-t-OP in [CnMIM]PF6 (n04–14). Ob-
viously, the FI and peak shape of 4-t-OP did not significant-
ly change, and in addition no obvious hysochromic and
bathochromic phenomenon occurred for the different chain
length treatments. These observations demonstrated that the
different carbon chain length of RTILs had no significant
effect on fluorescence behavior of 4-t-OP.

The Fluorescence-quenching Mechanism

Fluorescence quenching is a process that decreases FI of a
fluorophore. A variety of molecular interactions can result in
fluorescence quenching. There exist two basic types of fluo-
rescence quenching, i.e. one is static (instantaneous) and the
other is dynamic (collisional) quenching. Both quenching
processes require an interaction between fluorophore and
quencher. Static quenching refers to formation of a ground
state fluorophore-quencher complex which does not emit a
photon. Dynamic quenching refers to formation of an excited
state fluorophore-quencher complex [27]. The dynamic pro-
cess in which quenching mechanism is mainly due to collision
is governed by the linear Stern-Volmer (S-V) equation as
follows [28]:

I0=I ¼ 1þ KSV Q½ � ¼ KqΓ 0 Q½ �

where I0 and I are steady state fluorescence intensities in the
absence and presence of quencher, respectively. Ksv and Kq
are the S-V quenching constant and the bimolecular quench-
ing constant, respectively. [Q] is the concentration of quench-
er. Γ0 is the lifetime of fluorophore in the absence of a
quencher. Plots of I0/I versus concentrations of ionic liquids
are shown in Fig. 4. The strong linear correlation coefficients
(R2>0.97) suggest compliance of the S-V equation. The Ksv
values were 1.439×104L/mol for [C8MIM]BF4, 1.487×10

4L/
mol for [C8MIM]BF4, 1.414×10

4L/mol for [C8MIM]PF6 and
1.704×104L/mol for [C8MIM]PF6, respectively. As reported
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Fig. 1 The fluorescence spectra of 4-t-OP in four RTILs with varying concentrations. *1, 0 mM; 2, 0.2 mM; 3, 0.4 mM; 4, 0.6 mM; 5, 0.8 mM; 6,
1.0 mM

Fig. 2 The fluorescence intensity of 4-t-OP in RTILs with different anions
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Fig. 3 Effects of different carbon chain length. (a) The FI of 4-t-OP in [CnMIM]PF6 with different carbon chain length. (b) The fluorescence
emission spectra of 4-t-OP in [CnMIM]PF6 (n04–14) (The concentration of [CnMIM]PF6 was 1.0 mM)

Fig. 4 The Stern-Volmer plot for 4-t-OP in different RTILs at 25 °C

J Fluoresc (2013) 23:323–331 327



by Geng et al. [27], the S-V quenching constant for dynamic
quenching was less than 1.0×103L/mol, and thus it could be
inferred that the 4-t-OP quenching mode by the four ionic
liquids was a static quenching mechanism. However, the S-V
plots show a slightly positive deviation in Fig. 4, which
demonstrated that the quenching of 4-t-OP may be due to
the simultaneous presence of dynamic and static quenching.
The positive deviation phenomenon for S-V plots has been
observed by many researchers [28, 29]. On the contrary, Naik
and coworkers found that the S-V plot might show a negative
deviation due to different conformations of anthrylyinyl ace-
tate in the ground state [30].

Effects of the Different Temperatures

The S-V plots at different temperatures are shown in Fig. 5,
and the S-V equation parameters are listed in Table 1. A
gradual increasing trend for the quenching constants was
observed with increasing temperatures, indicating that the

bimolecular quenching reactions were diffusion-limited.
The rising temperatures decrease viscosity of the solution,
accelerate the molecular motion, and result in increasing
molecular diffusion coefficient. The increase in bimolecular
quenching constant suggests that the fluorescence-
quenching process may be a dynamic quenching mecha-
nism. The conclusion on temperature effect is in concomi-
tant with the above ones on S-V plots, i.e., the simultaneous
presence of dynamic and static quenching mechanism.

Different Effects of Ionic Liquids on Dansyl Chloride
(DNSCl) and 4-t-OP

As reported by Deng and coworkers, interactions of strong
or weak fluorescent substances with ionic liquids were
obviously different [31]. Wang and coworkers also found
that part of ionic liquids had fluorescence-enhancing effect
on strong fluorescent chemical (DNSCl), while quenching
effect on weak fluorescent chemical (17β-estradiol) [12].

Fig. 5 The Stern-Volmer plot for 4-t-OP in different RTILs at varying temperatures

328 J Fluoresc (2013) 23:323–331



DNSCl is a strong fluorescent substance used as a derivati-
zation reagent to enhance FI of weak fluorescence chemical
in fluorescence detection [32, 33]. In this investigation,
[C8MIM]PF6 and [C8MIM]BF4 were selected to study the
different RTIL-mediated effects on the strong (DNSCl) and
weak fluorescent chemicals (4-t-OP). Figure 6 shows the FIs
of DNSCl in the two RTILs. The more volume (0–300 μL)
of ionic liquid was added, the FIs of 4-t-OP were enhanced
more. When the volume of [C8MIM]BF4 was 300 μL, the FI
of DNSCl increased nearly 5-fold as compared to the con-
trol, and the enhanced amplitude was greater in [C8MIM]
PF6 than [C8MIM]BF4. However, as discussed above,
[C8MIM]PF6 and [C8MIM]BF4 had obvious quenching
effects on 4-t-OP. The different RTIL-mediated effects on
strong or weak fluorescent chemicals were also reported by
Wang and coworkers, who found an obvious quenching
effect on 17β-estradiol in RTILs [12]. But further research

is required to analyze for the mechanism of RTIL-mediated
effects on chemicals with strong or weak fluorophores.

Fluorescence Quenching of 4-t-OP and Fluorescence
Resonance Energy Transfer (FRET)

FRET is a photophysical process and occurs when the
electronic excitation energy of a donor chromophore is
transferred to an acceptor molecule nearby (10–90Å) via a
dipole–dipole interaction between the donor-acceptor pair
[34]. According to the Forster’s theory, the rate of energy
transfer is based on an overlap of emission spectrum of the
donor and absorption spectrum of the acceptor, relative
orientations and distance of the donor and acceptor transi-
tion dipoles, and fluorescence quantum yield of the donor.
Therefore, FRET process seems to be more efficient when
there is an appreciable overlap between the emission

Table 1 The Stern-Volmer
equation of 4-t-OP at different
temperature

4-t-OP T/°C Stern-Volmer equation R2 Ksv(104L.mol−1)

[C8MIM]PF6 25 y01.413x+1.042 0.991 1.413

35 y01.464x+0.806 0.995 1.464

45 y01.526x+0.943 0.979 1.526

[C14MIM]PF6 25 y01.704x+0.954 0.997 1.704

35 y01.738x+0.850 0.986 1.738

45 y01.570x+0.896 0.991 1.570

[C8MIM]PF4 25 y01.439x+0.683 0.986 1.439

35 y01.453x+0.835 0.995 1.453

45 y01.615x+0.971 0.995 1.615

[C14MIM]BF4 25 y01.487x+0.980 0.982 1.487

35 y01.582x+0.977 0.977 1.582

45 y01.633x+0.665 0.974 1.633

Fig. 6 Effects of RTILs on the FI of dansyl chloride. (a) [C8MIM]BF4; (b) [C8MIM]PF6). *1, 0 μL; 2, 100 μL; 3, 300 μL
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spectrum of the donor and the absorption spectrum of the
acceptor [35]. As discussed above, the FI of 4-t-OP was
decreased with the addition of RTILs. Therefore, it is
necessary to judge whether FRET occurs between RTILs
and 4-t-OP in the quenching process. Figure 7 shows
the emission spectra of 4-t-OP and absorption spectra
of [C8MIM]PF6. The maximum emission wavelength of
4-t-OP was 302.0 nm, while the maximum absorption
wavelength of [C8MIM]PF6 was 212.0 nm, demonstrat-
ing that no overlap phenomenon of emission spectrum
of the donor and absorption spectrum of the acceptor
occurred. Therefore, it can be inferred that the fluores-
cence quenching of 4-t-OP by the four RTILs does not
result from FRET phenomenon.

Effect of RTILs Optical Property

The previous investigation has proved that all imidazolium
ionic liquids exhibit an excitation wavelength-dependent
fluorescence behavior [9, 36, 37]. In this experiment, we
observed that the maximum excitation wavelength of the
[C8MIM]PF6 was about 212.0 nm, and that the emission
band of them ranged from 290.0 to 320.0 nm. The general
emission characteristics of the four RTILs are quite similar.
Under the conditions of the maximum excitation wave-
length (227.0 nm) of 4-t-OP, Obviously, the FI of 4-t-OP/
[C8MIM]PF6 complexes is far greater than that of the sole
[C8MIM]PF6. Thus, the optical properties of the four RTILs
hardly affect the fluorescent emission of 4-t-OP when they
are used as the solvents.

Evaluation of Analytical Performance

For the purpose of quantitative analysis, application of
RTILs as solvent for spectrofluorimetric detection of 4-t-

OP was further investigated. Herein, we chose 0.6 mM
[C8MIM]PF6 in acetonitrile as an example to demonstrate
selectivity and precision of this potential analytical method.
A series of experiments were designed to evaluate the
parameters including linearity, reproducibility, limit of de-
tection and other characteristics of this method. The calibra-
tion curve was y0479.8x+90.756, the linearity range was
0.01–0.8 mg/L, and the correlation coefficient (R2) was
0.9990. The detection limits (at S/N03) of 4-t-OP was
3.7 μg/L. The relative standard deviation (RSD) of 4-t-OP
(100 μg/L, n06) was 0.08 % for intra-day precision and
0.19 % for inter-day precision.

Conclusions

The four RTILs, [C8MIM]BF4, [C14MIM]BF4, [C8MIM]
PF6 and [C14MIM]PF6, had significantly fluorescence-
quenching effects on the FIs of 4-t-OP. The quenching
effect of 4-t-OP was decreased with increasing RTIL
concentration (0.2–1.0 mM). However, no obvious hyp-
sochromic or bathochromic phenomenon of the emission
maxima was observed in the quenching process. The
quenching effects by ionic liquids can rule out forming
possibility of ground-state complex between the fluoro-
phores in 4-t-OP and quencher (ionic liquids). The
fluorescence quenching of 4-t-OP in [CnMIM]BF4 was
greater than [CnMIM]PF6, but the carbon chain length
on imidazolium ring had no significant relationship with
the FI of 4-t-OP. Both the bimolecular quenching con-
stant Ksv, estimated from S-V equation to be larger than
1.0×103L/mol, and the different temperature effects
suggested that the fluorescence quenching of 4-t-OP by
four RTILs was the simultaneous presence of dynamic
and static quenching mechanism. The FI of DNSCl
increased nearly 5-fold as compared to the control with-
in [C8MIM]BF4, showing a sensitizing effect on the strong
fluorescent chemicals. The mechanism of the different
RTIL fluorescence-mediating effects on DNSCl and 4-t-
OP was unclear. Because no overlap phenomenon of
emission spectrum of 4-t-OP and absorption spectrum
of [C8MIM]PF6 was observed, the fluorescence quench-
ing of 4-t-OP by the four RTILs did not belong to
FRET phenomenon. The FI of 4-t-OP/[C8MIM]PF6
complex is far greater than that of the sole [C8MIM]
PF6, demonstrating that the optical properties of RTILs
hardly affect the fluorescent emission of 4-t-OP. As an
example of analytical performance, when 0.6 mM [C8MIM]
PF6 in acetonitrile was used as the solvent, the detection limit
of 4-t-OP was 3.7 μg/L, and the linearity range was 0.01–
0.8 mg/L (R2 00.9990). Overall, these results provide a theo-
retical foundation for application of RTILs in weak fluores-
cent chemicals.

Fig. 7 The emission spectra of 4-t-OP (a) and absorption spectra of
[C8MIM]PF6 (b)
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